Description
This work explores performance optimization strategies for training 3D generative models using PyTorch. We focus on training Variational Autoencoders (VAEs) on the ShapeNet dataset, a popular benchmark for this task. Our objective is to achieve high-fidelity reconstructions while minimizing the computational footprint and training time. We focus on: 1) Large-scale 3D dataset loading strategies using PyTorch & Google Cloud Storage Buckets 2) Implementation details and insights for 3D VAEs using PyTorch 2.x 3) Training using Automatic Mixed-precision regimes 4) Optimized training using torch.compile and different quantization techniques (as supported) - Dynamic Quantization - Static Quantization - Static Quantization-aware Training 5) Comparative Benchmark over several experiments performed with a focus on execution time and memory footprint Through this comprehensive study, we present a comparative analysis of the performance gains achieved by our optimized models. Our findings present empirical insights into the trade-offs between model accuracy, computational complexity, and hardware resource utilization.