Description
Black, Flake8, isort, and Mypy are useful Python linters but it’s challenging to use them effectively at scale in the case of multiple codebases, in a large codebase, or with many developers. Manually managing consistent linter versions and configurations across codebases requires endless effort. Linter analysis on large codebases is slow. Linters may slow down developers by asking them to fix trivial issues. Running linters in distributed CI jobs makes it hard to understand the overall developer experience.
To handle these scale challenges, we developed a reusable linter framework that releases new linter updates automatically, reuses consistent configurations, runs linters on only updated code to speedup runtime, collects logs and metrics to provide observability, and builds auto fixes for common linter issues. Our linter runs are fast and scalable. Every week, they run 10k times on multiple millions of lines of code in over 25 codebases, generating 25k suggestions for more than 200 developers. Its autofixes also save 20 hours of developer time every week.
In this talk, we’ll walk you through popular Python linters and configuration recommendations, and we will discuss common issues and solutions when scaling them out. Using linters more effectively will make it much easier for you to apply best practices and more quickly write better code.